

Heterogeneous Subgraph Features for Information Networks

Andreas Spitz, Diego Costa, Kai Chen, Jan Greulich, Johanna Geiß, Stefan Wiesberg, and Michael Gertz

June 10, 2018 – GRADES-NDA, Houston, Texas, USA

Heidelberg University, Germany Database Systems Research Group

1

Many information networks are heterogeneous

- Scientific publication networks
- Knowledge bases
- Metabolic networks
- • •

1

Many information networks are heterogeneous

- Scientific publication networks
- Knowledge bases
- Metabolic networks

...

How do you learn in heterogeneous networks?

Many information networks are heterogeneous

- Scientific publication networks
- Knowledge bases
- Metabolic networks
- • •

How do you learn in heterogeneous networks?

With features, of course

Many information networks are heterogeneous

- Scientific publication networks
- Knowledge bases
- Metabolic networks
- • •

How do you learn in heterogeneous networks?

- With features, of course
- But how do you get the features?

Classic features:

- ► Require domain knowledge
- Are time-consuming to engineer
- Require metadata that may not be available

Classic features:

- Require domain knowledge
- Are time-consuming to engineer
- Require metadata that may not be available

Neural node embeddings:

- Sample neighbourhoods through random walks
- Require extensive parameter tuning

Classic features:

- Require domain knowledge
- Are time-consuming to engineer
- Require metadata that may not be available

Neural node embeddings:

- Sample neighbourhoods through random walks
- Require extensive parameter tuning

Alternative idea: use labeled subgraph counts as features

Heterogeneous Subgraph Features

Labeled subgraphs around a node:

- Encode neighbourhood information
- Are extremely diverse in heterogeneous networks

Labeled subgraphs around a node:

- Encode neighbourhood information
- Are extremely diverse in heterogeneous networks

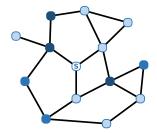
Conjecture:

Motivation: Heterogeneous Subgraph Features

Labeled subgraphs around a node:

- Encode neighbourhood information
- Are extremely diverse in heterogeneous networks

Conjecture:

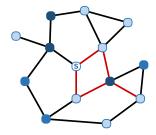


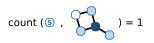
Motivation: Heterogeneous Subgraph Features

Labeled subgraphs around a node:

- Encode neighbourhood information
- Are extremely diverse in heterogeneous networks

Conjecture:



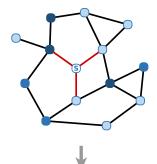


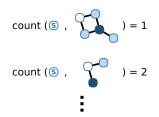
Motivation: Heterogeneous Subgraph Features

Labeled subgraphs around a node:

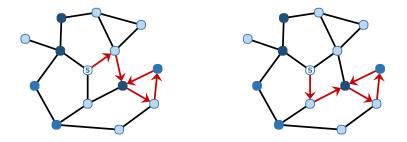
- Encode neighbourhood information
- Are extremely diverse in heterogeneous networks

Conjecture:





Isomorphism of Subgraphs



Problem: depending on the iteration order, the nodes of structurally identical subgraphs may be visited in different order.

Heterogeneous Subgraph Encoding

Core approach:

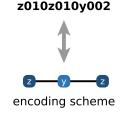
- Explore the local neighbourhood around each node
- Represent subgraphs by their characteristic string
- Count subgraphs by hashing the characteristic string
- Use the counts of subgraphs as node features

Core approach:

- Explore the local neighbourhood around each node
- Represent subgraphs by their characteristic string
- Count subgraphs by hashing the characteristic string
- Use the counts of subgraphs as node features

Characteristic string construction:

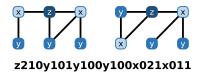
- Encode each node as a block
- Blocks start with the node label
- Subsequent entries denote neighbours of all given labels
- Blocks are sorted lexicographically



Encoding Collisions

Heterogeneous degree sequences:

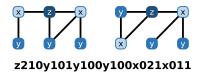
- ► Are a **pseudo**-canonical encoding
- May result in colliding encodings



Encoding Collisions

Heterogeneous degree sequences:

- Are a pseudo-canonical encoding
- May result in colliding encodings

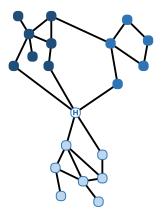


Encoding collisions:

- Can only be enumerated (no closed formula)
- Depend on the network structure and the labels
- Have negligible frequency in practice

Real-world networks have:

- Skewed degree distributions
- Highly connected nodes (hubs)

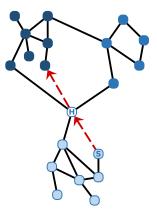


Real-world networks have:

- Skewed degree distributions
- Highly connected nodes (hubs)

Due to hubs:

- Feature extraction time is strongly increased
- Random walks retrieve non-local information

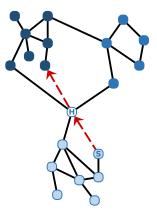


Real-world networks have:

- Skewed degree distributions
- Highly connected nodes (hubs)

Due to hubs:

- Feature extraction time is strongly increased
- Random walks retrieve non-local information



Intuition: Do not explore beyond nodes with degree $> d_{max}$.

Evaluation: Label Prediction

Given:

- Heterogeneous network
- Some nodes with missing labels

Predict:

Missing node labels

Given:

- Heterogeneous network
- Some nodes with missing labels

Formal approach:

- Model as a classification task using logistic regression
- Evaluate with F₁-score

Predict:

Missing node labels

Movie network (IMDB):

- Star-shaped structure around movies
- Low edge density

Scientific publication network (MAG):

- Intermediate structure
- Papers form the core component

Entity cooccurrence network (LOAD):

- Cooccurrences of named entities in text
- Strongly connected structure
- High edge density

Subgraph features:

- Maximum number of edges: 5
- ▶ No exploration beyond 10% of highest degree nodes
- Masked starting node label

Embedded features:

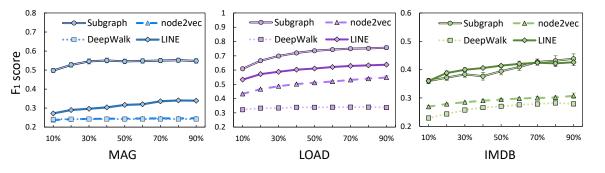
- ► DeepWalk
- LINE
- node2vec

Extraction Runtime Estimation (seconds per node)

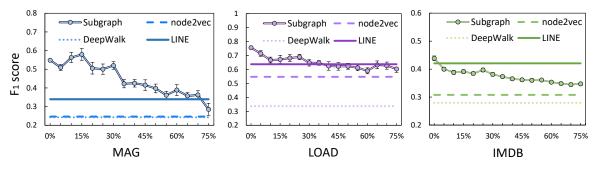
	subgraph features					node2ve	c DeepWalk	LINE
	mean	75%	90%	95%	max		mean	
LOAD	32.1	19.6	29.7	53.0	1046	0.19	0.11	0.66
IMDB	2.6	1.7	3.0	6.7	47	0.01	0.01	0.64
MAG	25.2	10.4	11.0	19.5	2493	0.02	0.01	0.49

Percentages denote nodes for which the extraction finished in at most the shown time.

Evaluation Results (Training Size)



Evaluation Results (Missing Labels)



Evaluation: Institution Ranking

Given:

- Scientific publication network
- A range of years
- A set of conferences

Predict ranking of institutions:

- ► For upcoming conferences
- By accepted papers
- ► For the next conference

KDDCup 2016. https://kddcup2016.azurewebsites.net

Given:

- Scientific publication network
- A range of years
- A set of conferences

Predict ranking of institutions:

- ► For upcoming conferences
- By accepted papers
- ► For the next conference

Formal approach:

- Model as a regression task for the institution relevance score
- Evaluate with normalized discounted cumulative gain (NDCG20)

KDDCup 2016. https://kddcup2016.azurewebsites.net

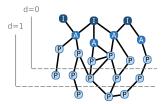
Subset of the Microsoft Academic Graph:

- Institutions I
- Authors A
- Papers P
- Publication data from 2011 2016

Data preparation:

- Focus on 5 conferences
 KDD, FSE, ICML, MM, MOBICOM
- Use citations to a depth of 3

Microsoft Academic Graph (MAG)



Feature Types and Extraction

Classic features (manually engineered):

- ▶ Previous relevance scores, publication counts, etc. (8)
- Linguistic features (32)

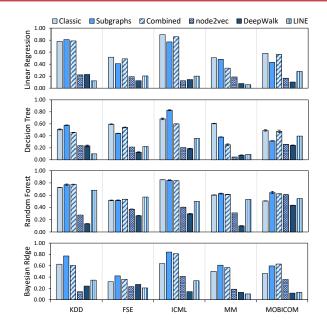
Subgraph features:

- Maximum number of edges: 5
- No maximum degree exploration limit

Embedded features:

- DeepWalk
- LINE
- node2vec

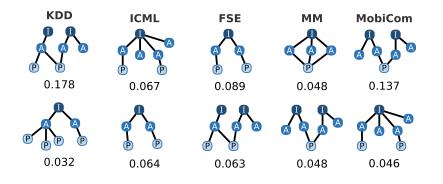
NDCG Scores for Institution Ranking



Average NDCG Scores for Institution Ranking

	LinRegr	DecTree	RanForest	BayRidge
classic	0.65	0.58	0.64	0.51
subgraph	0.58	0.51	0.68	0.65
combined	0.62	0.46	0.68	0.60
node2vec	0.18	0.19	0.39	0.27
DeepWalk	0.14	0.17	0.25	0.18
LINE	0.17	0.23	0.56	0.23

Feature Importance Analysis (Random Forest)



Summary & Resources

Summary

Heterogeneous subgraph features:

- Extracted by local exploration and enumeration
- Avoid isomorphism test by encoding degree sequences

Summary

Heterogeneous subgraph features:

- Extracted by local exploration and enumeration
- Avoid isomorphism test by encoding degree sequences

In comparison to classic features:

- Similar performance
- Require no domain knowledge for extraction
- No engineering process necessary

Summary

Heterogeneous subgraph features:

- Extracted by local exploration and enumeration
- Avoid isomorphism test by encoding degree sequences

In comparison to classic features:

- Similar performance
- Require no domain knowledge for extraction
- No engineering process necessary

In comparison to embedded features:

- Better predictive performance
- Longer extraction time

Resources

The implementation is available online:

- C++ (core extraction routines)
- Python (wrapper)

https://dbs.ifi.uni-heidelberg.de/resources/hsgf/

Resources

The implementation is available online:

- C++ (core extraction routines)
- Python (wrapper)

https://dbs.ifi.uni-heidelberg.de/resources/hsgf/

